If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3a^2+13a-10=0
a = 3; b = 13; c = -10;
Δ = b2-4ac
Δ = 132-4·3·(-10)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-17}{2*3}=\frac{-30}{6} =-5 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+17}{2*3}=\frac{4}{6} =2/3 $
| 5=19+z/5 | | x-(-4.2)=8.6 | | 1/3x+x-20+40+x-10=360 | | 3=36+7y | | 12x+28+3x+62=180 | | F(n)=-4+2n | | a/2+5=-a/2+10 | | 42-y=189 | | 7z-5(z-1)=25 | | -5y(-2+7)=55 | | Y=1-4x-3 | | 5k(k-1)=10 | | (8x+74)+2(2x+76)=180 | | 6x-24=9x+24 | | .5x+.5x+x-15+100+x-25=540 | | 40=2(b-15) | | 7-(8x+1)=18 | | -2s^2-9s+3=0 | | 10p-2(3p-6)=4(3p-6)=4(3p-6)-8p | | 7z-5(2-1)=25 | | 3x+4-6x-8=32 | | 5.x=25 | | 1+2x+x=x-5+3 | | 6.x=25 | | 3x+24=6x+18 | | (8x+74)+(2x+76)=180 | | 2=m6+-1 | | 7=n+19 | | 8q^2+4q=4q^2+5q+5 | | 3x-5=10+7x. | | 17+x=11 | | 2n–3=3 |